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Relativistic Bernstein modes are not totally undamped, but have a small, negative definite imaginary
frequency component that peaks where the frequency is closest to the rest cyclotron harmonic.
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I. INTRODUCTION

In our previous paper on Bernstein modes in a weakly
relativistic treatment based on Maxwellian distributions �1�
we claimed that contributions due to the singularities that
occurred at the resonances �2=n2 / �̂2 exactly canceled, leav-
ing the modes undamped. However, it has since been pointed
out �2� that the path of integration proposed in �1� to avoid
the singularities was incorrect. The correct path should have
been below the singularity on the negative p̂� axis, and above
it on the positive p̂� axis. As a result, the contributions add,
and the modes are damped.

In this paper we calculate the damping of the relativistic
Bernstein modes, assuming that the damping is weak. More
precisely, given that the frequency of a Bernstein wave of
normalized wave number �= �2/a�1/2k�c /�0 is �̂=� /�0,
we now write �̂= �̂r+ i�̂i, and assume that ��̂i / �̂r��1. We
will use the same notation throughout as in �1�, so that a
=mec

2 / �kBT� is the relativistic parameter, and �0=eB0 /me is
the rest cyclotron frequency for an electron or positron.

The full dispersion relation obtained in �1� is
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where �̂p=�p /�0 is the normalized plasma frequency, p̂�
= p� / �mec� and p̂�= p� / �mec�.

Consider the properties of the second integral in Eq. �1�.
In the limit ��̂i / �̂r��1,
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Hence the integral becomes
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For convenience, define

bn
2 = n2/�̂r

2 − 1 �4�

so that it is apparent that a different treatment of the integral
I is required, depending on the sign of bn

2 and the relative
sizes of bn

2 and p̂�
2 .

We will use throughout the notation

xn
2 = abn

2/2, �5�
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Case (i) bn
2
0, bn

2
 p̂�
2

The integral terms in Eq. �1� can be written in the simpler
form

I = �2/a	
0

xn

xe−xn
2+x2

Jn
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�

e−v2
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, �9�

in which � is the Landau contour given in Fig. 1. The poles
are at ±v0, where v0=�x2− iyn.

For the singular integral in Eq. �9�, the contribution from
the poles is given by

− 2�i
e−x2+iyn

v0
�10�

using the Residue theorem. The integration along the real
line then yields

*Corresponding author. Email address: d.diver@physics.gla.ac.uk FIG. 1. Definition of the contour for the integral in Eq. �9�.
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with all other contributions canceling. Note that the integrals
above are both real.

Case (ii) bn
2
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Here the p̂� integral takes the form
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and is nonsingular. This integral can be expressed in terms of
real and imaginary parts as

	
−�

� e−v2
�v2 + x2�

�v2 + x2�2 + yn
2dv − iyn	

−�

� e−v2

�v2 + x2�2 + yn
2dv . �13�

When yn=0, the second integral vanishes, as expected.
Case (iii) n	�̂r
This is similar to case �ii�, but now bn

2	0; the p̂� integral
is as before, subject to this proviso.

The dispersion relation for frequency m−1	�̂r	m
where m�2 is an integer and C=8���̂p

2a /�2 can be written
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and where the following additional function definitions have
been used:
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Note that in the limit yn→0, p1→ex2
erfc�x�, q1

→ ie−x2
erf�ix�, and An

II and An
III become purely real; these

then agree with the definitions given in Eqs. �48� and �49� of
�1�. The real part of An

I similarly agrees with Eq. �47� of �1�,
but there is an imaginary contribution from the changed
contour.

The procedure now, as discussed earlier, is to extract the
real and imaginary parts of the dispersion relation and to
make the assumption that the real part is relatively un-
changed from our earlier paper �1�. In this way, we can use
the imaginary part of the dispersion relation to define an
implicit relationship that will yield �̂i as a function of �̂r and
the plasma parameters. It will turn out that we must retain
the effects of yn beyond the linear approximation in order to
avoid singular integrals. This is not the case when consider-
ing the real part, hence justifying the approximation of set-
ting �̂i=0 there.

FIG. 2. Pluses �� show the upper loop of the dispersion curve
�̂r �left y axis� vs � �x axis� for a=10, and 1	�̂r	2. The crosses
��� show how −�̂i �right y axis� varies as a function of � along the
dispersion curve.

FIG. 3. Caption as for Fig. 2, showing the real and imaginary
parts on the lower loop of the same dispersion curve.
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In order to separate the real and imaginary parts of the
dispersion relation, we introduce the following notation for
An

I :

An
I = An1

I − iynAn2
I , �23�
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with the obvious extension to An
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For Bn, we note that
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and so we can write

Bn = Bn1 + iBn2, �29�

Bn1 = �2e−xn
2	

0

xn

dx
x

rn
Jn

2���xn
2 − x2�

� ��rn + x2 cos yn + �rn − x2 sin yn� , �30�

Bn2 = �2e−xn
2	

0

xn

dx
x

rn
Jn

2���xn
2 − x2�

� ��rn + x2 sin yn − �rn − x2 cos yn� . �31�

With this notation we can collect the imaginary terms in the
dispersion relation to get
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Now since we have assumed that ��̂i / �̂r��1, and therefore
that the real part of the dispersion relation can be calculated
by ignoring �̂i contributions, we have
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This allows us to simplify the expression for �̂i:
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Note that Eq. �34� defines �̂i implicitly, since �̂i appears in
functional dependencies on the right-hand side. To solve Eq.
�34� for �̂i requires an iterative scheme, converging on the
true value. The results of such a scheme applied to the cases
of a=10 and a=20, for frequencies in the range 1	�̂r	2
and 2	�̂r	3 and for �̂p=3, are shown in Figs. 2–7. As in
�1�, harmonics above the sixth order could be neglected for
these cases.

It is possible to derive a very simple approximation for
the right-hand side of Eq. �34�. Noting that Am2

I is dominant
among the terms in the denominator �by virtue of its depen-
dence on the function q2�, and similarly Bm1 is the largest
contributor to the numerator, it is possible to write

FIG. 4. Pluses �� show the upper loop of the dispersion curve
�̂r �left y axis� vs � �x axis� for a=20, and 1	�̂r	2. The crosses
��� show how −�̂i �right y axis� varies as a function of � along the
dispersion curve.

FIG. 5. Caption as for Fig. 4, showing the real and imaginary
parts on the lower loop of the same dispersion curve.
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�̂i 
 −
�̂r

3Bm1

am2Am2
I �35�

if we retain only these dominant terms and if we neglect the
term 4�̂r��̂r

2− �̂p
2� compared with aCn6Am2

I / �̂r
3. Using the

definition of yn from Eq. �6�, we have eventually

ym 
 −
Bm1

Am2
I �36�

which generally overestimates the value of ��̂i� by up to 20%
when compared with the result of retaining all the relevant
summation terms.

II. SUMMARY

This short paper updates our original calculations �1� by
showing that Bernstein modes in relativistic pair plasmas are
indeed damped, albeit very weakly. The classical electron-
ion picture suggests that this damping should occur close to

the classical cyclotron resonances at �
n�c �3�. Our com-
puted damping terms are largest closest to the cyclotron har-
monics on the upper loop of each dispersion curve; �̂i is
comparatively smaller on the lower branch mainly because
xm is larger in that lower frequency part of the curve, and so
Am2

I is more dominant than Bm1, leading to a smaller �̂i. This
can readily be seen from the simple approximation given in
Eq. �36�.

Note also that we have shown in earlier work �1� that
relativistic effects significantly change the shape and location
of the dispersion curves for pair-plasma Bernstein modes
such that they do not remain localized near a particular har-
monic. In fact, most of the Bernstein mode dispersion curves
are free from significant damping, and therefore the associ-
ated waves propagate largely without hindrance.
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FIG. 7. Caption as for Fig. 6, showing the real and imaginary
parts on the lower loop of the same dispersion curve.

FIG. 6. Pluses �� show the upper loop of the dispersion curve
�̂r �left y axis� vs � �x axis� for a=20, and 2	�̂r	3. The crosses
��� show how −�̂i �right y axis� varies as a function of � along the
dispersion curve.
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